
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

DAHLGREN DIVISION
NAVAL SURFACE WARFARE CENTER
Dahlgren, Virginia 22448-5100

NSWCDD/TR-94/217

PARALLEL BLOCK IMPLICIT INTEGRATION TECHNIQUE
FOR TRAJECTORY PARALLELISM

BYALANE.RUFTY

STRATEGIC AND SPACE SYSTEMS DEPARTMENT

LY
W,i H^ ELEC1 *■ ^ ^

9 a y la

£C 2 8 1994 i ;

Ei£

DECEMBER 1994

Approved for public release; distribution is unlimited.

19941223 135

NSWCDD/TR-94/217

FOREWORD

This report describes the evaluation of a Parallel Block Implicit (PBI) integration tech-
nique in a simplified missile trajectory. This project was carried out to ascertain the suit-
ability of PBI techniques when modest amounts of parallelism are available; that is, when
3 to 10 processors are allocated per missile trajectory. This work was performed in the SLBM
Research and Analysis Division as a Systems Engineering Enhancement (SEE) project in

fiscal year 1992.

The author would like to thank Mr. Alvin Good, SLBM Software Development Division
(K50), for his help with the test results obtained from the TRANSPUTER. The author would
also like to thank his research supervisor, Mr. Davis Owen, for his general encouragement

and support.

This report has been reviewed by Mrs. Carol A. Rose, Head, Fire Control Formulation
Branch and Dr. D. W. Lando, Head, SLBM Research and Analysis Division.

Approved by:

R. L. SCHMIDT^, Head
Strategic and Space Systems Department

i/ii

NSWCDD/TR-94/217

ABSTRACT

This report describes the evaluation of a Parallel Block Implicit (PBI) integration tech-
nique in a simplified missile trajectory. This project was carried out to ascertain the suit-
ability of PBI techniques when modest amounts of parallelism are available; that is, when
3 to 10 processors are allocated per missile trajectory. The PBI technique was first evalu-
ated on a serial mainframe computer before it was implemented in parallel on an INMOS
TRANSPUTER with four parallel central processing units. While the serial implementation
of the four-node PBI technique indicated that a speedup of a factor of three to four was
possible with ideal hardware, in practice only a modest gain (approximately 30 percent) was
obtained because of systems-related overhead.

,'".CC&S ion For

i J l i'S CRA&I
N$

'P T/\ Q 1 :~.D ^
'in u need D
CTiTiCn

:i;-.„-;.-i/

Codes

; i'v.-;.(
... / Of

H j _! _ 1

iii/iv

NSWCDD/TR-94/217

CONTENTS

Page

INTRODUCTION l

TRAJECTORY NUMERICAL INTEGRATION SCHEMES 3

PARALLEL BLOCK IMPLICIT APPROACH 4

TESTING RESULTS 5

PROTOTYPE TRAJECTORY TESTING STAGE 6

TRANSPUTER TESTING STAGE 6

SUMMARY AND CONCLUSIONS 7

REFERENCES 8

APPENDICES

A. PARALLEL BLOCK IMPLICIT FORMULATION A-l

B. OBALTE GRAVITATIONAL MODEL DERIVATION B-l

DISTRIBUTION (!)

v/vi

NSWCDD/TR-94/217

INTRODUCTION

From a hardware perspective parallel processing provides a natural way to greatly expand
limited computational resources. This has given rise to a strong trend toward hardware
parallelism; however, software is frequently unable to make efficient use of this parallelism.
There are numerous reasons for this. First, as of early 1993, only rudimentary compilers
exist for converting standard software into a suitable parallelized assembly language—there
are, however, development efforts under way in this area for the Cray1 as well as other
environments. Second, standards are somewhat lacking for parallelism in both the hardware
and compiler arenas. This further compounds matters by tending to make parallel coding
efforts nontransportable. On this standardization front there are, however, several bright
prospects with Fortran 90 being a notable example.2 Third, for many hardware architectures
parallel implementations have steep overhead requirements; consequently, if software is not
well suited to the associated operating system and hardware environment then some parallel
implementations can, in fact, consume more execution time than consumed by purely serial
implementations. Finally, physical problems and engineering systems are quite frequently
not amenable to parallelism and, if this is the case, 'smart' compilers and proper hardware
can have only limited benefits.

There are two standard software strategies for implementing parallelism. In the first
strategy, one attempts to have large blocks of high-level code that run independently. This
approach is labeled 'high-level parallelism.' In the second strategy, parallelism is worked
directly into the problem definition at some basic level. This second approach is known as
'low-level parallelism.' The potential applicability of both these approaches will depend on
the combination of the hardware at hand, the problem under consideration, and the soft-
ware engineering itself. If high-level parallelism is a viable strategy, it can frequently be
implemented in a direct and straightforward way. For example, if one wishes to implement
missile trajectory simulations (which is the main problem of interest here) and there are four
completely independent processors available, one could directly implement one missile tra-
jectory on each of the processors and obtain an approximate speedup of a factor of four with
a minimal amount of effort—provided, of course, that neither data nor memory addressing
problems arise. Given that such straightforward steps have been taken where appropriate,
the following question arises: Can a better scheme be found or can additional parallelism be
made use of? Low-level parallelism arises immediately in this context. For trajectory soft-
ware the problem of how to attempt low-level parallelism is, however, enigmatic. This is not
too surprising since trajectories themselves are serial in nature—the current 'position' and
'velocity' depend directly on the 'position' and 'velocity' at any given past instant. Stated
differently: All dynamical variables have a 'Christmas tree light' or serial-like dependence
on their past values. Any successful low-level parallel trajectory integration scheme must be

NSWCDD/TR-94/217

robust enough to overcome the inherent penalty imposed by its nonserial nature. This report,
then, analyzes what can be accomplished by applying low-level parallelism to trajectory

modeling.

Just as there are two basic software strategies for implementing parallelism, there are two
basic strategies on the hardware front. Parallel hardware can thus be characterized by two
extremes: 'small-scale' parallelism where four or so processors are involved and 'large-scale'
or massive parallelism where 1000 or more processors are frequently used. It is perhaps worth
noting that while massive parallelism is rapidly gaining favor as a preferred way to engineer
up scale performance,3'4'5 the actual realized performance is frequently rather disappointing.

The particular evaluation effort at hand is restricted to 'small-scale' parallelism. The
reasons for this restriction are twofold: first, available hardware for testing was very re-
stricted and, in fact, a TRANSPUTER board with four individual processing units mounted
on a 286 personal computer was used*. Second, it is clear that the problem under study
(individual missile trajectories) is manifestly unsuited for massive parallelism. One relatively
straightforward way to make use of low-level parallelism is to simply use the vector nature of
trajectory variables by assigning one computation per register; however, this approach has
severe limitations and tends to over utilize overhead resources. The most promising approach
to low-level trajectory parallelism that emerged in this study was the Parallel Block Implicit
(PBI) technique. This technique was first implemented on a serial computer (CDC 875)
for extensive test and evaluation. Since it performed as hoped by displaying considerable
promise in the standard mainframe environment, it was then implemented on a 286-based
INMOS TRANSPUTER with four processing elements—as mentioned earlier. Mr. Alvin
Good of the SLBM Software Development Division (K50) performed the TRANSPUTER
implementation based on the supplied formulation—this formulation is included as Appen-
dix A. He subsequently performed a thorough timing evaluation. Overhead proved to be a
problem for the PBI technique just as it has for all other attempts at low-level parallelism (in-
cluding in-house attempts based on COGENT machines). There are strong indications that
if hardware without undue overhead constraints becomes available then the PBI technique
will perform as desired.

This report contains a brief overview of parallel trajectory integration strategies, the
merits of the PBI approach, a summary of procedures carried out in the present study, a
synopsis of the test results obtained on the TRANSPUTER by Mr. Alvin Good of K50,
and a summary of the findings. Appendix A contains mathematical implementation details
for the PBI, as well as the Runge/Kutta (R/K), approach while Appendix B contains a
derivation of the oblate gravity model used. It is worth noting that the PBI approach is not
mentioned in standard text books and all the relevant PBI journal articles seem to predate
the current trend toward parallelism.6*7-8 Thus part of the intent of this report is to draw
wider attention to a noteworthy but somewhat underutilized integration technique.

* When the TRANSPUTER boards are mounted on a 386 similar performance results, but
there are many alternative transputer architectures.5

NSWCDD/TR-94/217

TRAJECTORY NUMERICAL INTEGRATION SCHEMES

This section gives an overview of various relevant trajectory integration strategies and
then discusses the background studies leading up to the choice of the PBI technique as the
leading candidate for low-level parallelism. For missile trajectories of interest, a complicated
engineering system is being simulated and thus large numbers of so called 'critical events' can
be expected. Critical events tend to strongly reduce the efficiency of standard 'predictor-
corrector' techniques9 and therefore R/K techniques naturally come under consideration.
R/K techniques are 'self-starting' and thus can be easily adapted to problems where a large
number of 'start-ups' arise from critical events. Unfortunately, R/K techniques are strongly
serial in nature so they are not easily adapted to parallelism; moreover, the efficiency of R/K
techniques in trajectory applications stems largely from this serial nature. Within certain
specialized niches, existing R/K techniques do, however, have parallelization promise. For
example, iterated implicit R/K techniques10,11 are, in general, worth examining in connec-
tion with six degree of freedom (6-D) trajectory applications. Implicit R/K techniques are
useful in situations where integration stability must be controlled; i.e., for a class of systems
governed by so called 'stiff differential equations,'12 which includes 6-D trajectory models.

Given the intrinsic difficulty of successfully parallelizing R/K approaches, alternative
integration schemes came under consideration. Many new ideas surfaced as potentially in-
teresting. Most of the approaches attempted to overcome the serial dependence associated
with numerical integration midpoints. (For an example of this serial dependence see the
fourth-order R/K procedure shown in Appendix A, Section II.) One alternative idea for an
integration step procedure was to use polynomial fitting techniques. In this approach, one
first uses a polynomial fit or other suitable basis set over a small interval in order to predict
values for midpoint step locations. The resulting evaluations are then used in a function-
alization integration step update procedure so as to complete the current integration step.
Another alternative approach was based on the fact that geophysical collocation can be used
to develop optimal integrators for geophysical quantities and these 'collocation integrators'
are easily parallelized. In their realm of applicability, 'collocation integrators' are frequently
more efficient than standard approaches because the covariance information used by 'col-
location integrators' is more complete than the information used by standard quadrature
integrators. Given this inherent efficiency, the hope was that such approaches could be
adapted to replace standard trajectory numerical integrators. In particular, the idea was to
use (geophysical) collocation-like techniques with covariance functions developed specifically
for the integration task at hand as well as specific missile types under consideration so as
to decouple midpoint step evaluations in the integration schemes. During the time these
and a number of other ideas (such as Encke-based approaches and variation of parameters13)
were under preliminary consideration, a thorough literature review turned up the PBI tech-
nique and none of these alternatives were followed up. The PBI technique has several of

NSWCDD/TR-94/217

the best features of the alternative approaches already directly built into it. Moreover, PBI
techniques have the great advantage of having a proven efficiency that is comparable to ex-
isting R/K techniques for serial implementations—something that could hardly be expected
of any of the novel techniques listed previously (with the possible exception of geophysical
collocation-like approaches). Perhaps the most significant aspect of the PBI technique is
that it can be parallelized naturally. Further advantages of the PBI approach are discussed

in the next section.

PARALLEL BLOCK IMPLICIT APPROACH

PBI techniques are discussed at length in the original literature7,8 and a complete imple-
mentation description is given in Appendix A, Section III (which is based on a synopsis found
in Reference 11). Further, since the main body of this report is introductory in nature, only
a descriptive treatment is given in this section. PBI techniques contain a certain number
of so-called nodes which are analogous to the midpoint evaluations of ordinary integration
schemes except that they are completely independent and so can be evaluated in parallel.
By subjecting these node points to a form of iteration, or iterative improvement, solutions of
high order result. (The order of an integration scheme and other standard numerical analysis
terms are defined in standard textbook references.9) When PBI techniques are compared with
R/K techniques they generally involve more computations per integration step, but because
of their greatly increased order of integration one can take much larger integration steps.
In general for serial applications, because of these two offsetting factors, PBI techniques are
roughly as efficient as R/K techniques. Any gain in PBI efficiency due to parallelism will
thus result in direct improvements in comparison with R/K techniques. A mathematical
description of four-node PBI techniques can be found in Section III of Appendix A. Paral-
lelism arises in the PBI approach from the fact that, for each iteration of equations (A-13),
(A-14), (A-15) and (A-16), the main trajectory evaluations are independent; that is, F(l,s),
F(2,s), F(3,s), and F(4,s) can be evaluated on independent processors for each given value

of s.

PBI techniques were judged as worth exploring, in part because of the following notewor-
thy features: (1) PBI techniques are inherently parallel. For example, the four-node iterative
PBI system implemented uses four concurrent 'function' evaluations and thus is naturally
suited to the use of four simultaneous, more or less equally loaded, processors. Furthermore,
if each of the 3 vector components of position and velocity are assigned dedicated processors
then 12 processors can, in theory, be efficiently utilized. In addition, PBI techniques exist
for various numbers of nodes. (2) PBI techniques are of high order. The four-node PBI
technique implemented is of order seven while most standard in-house R/K methods are of
order four. (3) All the final node points are also accurate trajectory evaluation points so
one can easily use them as interpolation points or as trajectory output points. (4) When
implemented in serial, PBI techniques are roughly as efficient as R/K techniques. There

NSWCDD/TR-94/217

is thus only a nominal penalty to overcome in using a PBI technique in place of a R/K
technique. (5) PBI techniques are compatible with Encke techniques which are frequently
used in conjunction with R/K techniques to enhance their efficiency. (6) The 'step size' can
be varied at will from one integration cycle to the next. (7) PBI techniques are relatively

easy to implement.

From this list it is clear that PBI techniques have a number of desirable traits. Thus,
for example, points (3) and (6) when taken in conjunction mean that one can easily handle
interrupts for critical events without greatly hampering the algorithm's efficiency—this is
an important point since many otherwise efficient integration schemes are of rather limited
SLBM utility because of it. PBI techniques may be tentatively considered the 'bench mark
standard' by which other attempts at low-level trajectory numerical integration parallelism
should be judged. The relative merits of the PBI approach are not, however, completely
clear-cut. For example, while the chosen PBI implementation is seventh-order, there are only
five usable interpolation points per integration cycle. In addition to limiting the accuracy of
critical event predictions (i.e., item number (3)), this could make the algorithm somewhat less
accurate when time-dependent forces are included. Time-dependent forces occur in practice
when thrust tables are introduced. Thus, if the PBI technique is to be put to practical
use it may have to be extended to handle explicit time dependence better. A preliminary
examination suggests such modifications can be readily implemented when and if required.

The two primary issues in evaluating the merits of the PBI approach are the relative
efficiency and accuracy of the technique and the suitability of the technique to available

hardware.

TESTING RESULTS

To properly evaluate numerical algorithm efficiency and accuracy one must do compar-
isons relative to other schemes; consequently, the first step in this study was to compare
the PBI techniques to a standard fourth-order R/K technique. This part of the study was
performed with a test bed trajectory model implemented on a serial mainframe computer.
After this mainframe testing phase was carried out, the second part of the testing phase
involving a parallel TRANSPUTER implementation was performed. The results of both
phases of testing should be born in mind when forming an assessment of the suitability of
the PBI technique in the context of other uses. Available hardware was somewhat limited
in the TRANSPUTER testing phase.

NSWCDD/TR-94/217

PROTOTYPE TRAJECTORY TESTING STAGE

First a 'test bed trajectory model' was developed. This test bed trajectory model was
a 'synthetic' trajectory model implemented on a standard serial computer and served as a
simplified test platform for parallel numerical integration techniques. This model was devel-
oped with a simplified vacuum and atmospheric trajectory reentry phase and also included
the ability to model either tesseral or oblate gravity for all phases of flight. In addition, a
simple thrust boost model was included but was not used in this study. Both a standard
fourth-order R/K and four-node PBI integration technique were then implemented m this
model. Comparison studies of these two integration schemes were carried out for both the
vacuum and reentry phases of flight with both the oblate and tesseral gravity models. The
PBI technique was found to be capable of taking integration steps that are between three
and four times as large as the R/K technique. For an ordinary serial computer this means
that the PBI technique is roughly as efficient as the R/K technique since, for example, the
four-node PBI technique involves four times as much computation per step. However, on a
parallel computer of the right architecture (i.e., a four-element system with low overhead),
the four-node PBI technique should run four times as fast. Similar types of ratios should hold
for PBI schemes with higher numbers of nodes if operating system overhead is low; i.e., a six-
node PBI scheme should be roughly six times as fast with the proper architecture. Testing
on serial computers thus indicated that PBI performance was as indicated in the technical
literature.7,8-n The next step was to determine if the speedup of a factor of three and a
half could actually be realized for available parallel computer systems. Toward that end,
the test bed model was simplified even further and a corresponding formulation was written
for Fortran code (see Appendix A). These products were then passed to K50 personnel who
then performed the implementation and timing studies on the TRANSPUTER.

TRANSPUTER TESTING STAGE

While the theoretical limit of efficiency of the PBI technique as implemented is a speedup
of a factor of four, there is a hardware-imposed theoretical speedup limit of a factor of three
due to limitations of the four-element TRANSPUTER architecture employed. Moreover,
with a four-element TRANSPUTER architecture even this limit of three is very hard to
approach in low-level parallelism experiments because of hardware overhead considerations.
In fact, any part of the trajectory that is not in parallel remains in full-time residence on at
least one element and ties up system resources. Since the PBI integration technique is tied
to trajectory architecture and a general-purpose study was intended, it was decided early on
that K50 would implement only an oblate gravity force module and that more sophisticated
force model aspects (i.e., tesseral gravity, thrust tables, aerodynamic forces, etc.) were to be
'emulated' (at least for timing study purposes) by looping through the oblate gravity routine
repeatedly. More precisely, the requisite 'timing emulation loops' were placed internally to
Section Il.d (or Ill.d) of Appendix A, but outside all the computations in that section so as to
perform the same computation repeatedly. For such comparison studies, typically 25 to 2000
loops might be expected to emulate various levels of complexity found in standard trajectory

models.

NSWCDD/TR-94/217

Timing studies were conducted on the complete trajectories including the parts that were
outside the integration loop and so not in parallel. Because of overhead, the PBI technique
actually took more time than a serial implementation for 1 to 10 'timing emulation loops.'
This result was expected. At 35 loops the four-node TRANSPUTER implementation took
24 percent less time than the serial implementation. This 24 percent less time amounts to
a speedup of a factor of 1.31, which was an encouraging result. However, not much greater
efficiency was obtained as the number of loops was increased—at 2000 loops there was a 29
percent savings. This corresponds to a speedup of a factor of 1.42. To check the hypothesis
that TRANSPUTER overhead was hampering the PBI efficiency timing marks were set
around just that part of the code which was explicitly parallelized (i.e., the oblate gravity
routine). This experiment confirmed this hypothesis—for example, with 2000 loops around
the oblate gravity computations a speedup of a factor of 2.85 was obtained. Here the factor of
2.85 is close to the theoretical limit of a factor of 3 previously mentioned. Given the overhead
requirements of available in-house hardware, it seems that only modest gains can be expected
from any form of low-level parallelism with the TRANSPUTER architecture used. The main
question arising here is whether a new TRANSPUTER architecture (i.e., one employing
more processing elements) could be employed so as to greatly lessen overhead problems—
unfortunately such hardware-specific issues were outside the scope of the present study.

SUMMARY AND CONCLUSIONS

In summary, while the serial mainframe implementation indicated that a speedup of a
factor of around 3.5 was quite possible with ideal parallel hardware, only a modest speedup of
about 1.3 was obtained with the hardware at hand because of systems-related overhead. The
problem of systems-related overhead is by no means limited to the hardware and software
tested in the present low-level parallelism study, but has been found to be pervasive. By using
redundant computational resources, it should be possible to circumvent overhead problems.
The speedup of 2.85 obtained in the special experiment mentioned in the last section seems
to lend strong support to this hypothesis. Given the current hardware overhead situation, it
seems that the most efficient available strategy is to stick with high-level parallelism whenever
possible. The PBI approach itself is, however, worth considering as a substitute for certain
R/K applications.

NSWCDD/TR-94/217

REFERENCES

1. Comerford, R., "Software on the brink," IEE Spectrum, Vol. 29, No. 9, pp. 34-38,
1992.

2. Metcalf, M., "Still programming after all these years," New Scientist, Vol. 135,
No. 1838, pp. 30-33, 1992.

3. Zorpette, G., "The power of parallelism," IEE Spectrum, Vol. 29, No. 9, pp. 28-33,

1992.

4. Cybenko, G. and Kuck, D. J., "Revolution or evolution?," IEE Spectrum, Vol. 29,
No. 9, pp. 39-41, 1992.

5. Jacob, R. and Anderson, J., "Do-it-Yourself Massively Parallel Supercomputer
Does Useful Physics," Computers in Physics, Vol. 6, No. 3, pp. 244-251, 1992.

6. Rosser, J. B., "A Runge-Kutta for all seasons," SIAM Review, Vol. 9, pp. 417-452,

1967.

7. Shampine, L. F. and Watts, A. H., "Block implicit one-step methods," Math.
Comput., Vol. 23, pp. 731-740, 1969.

8. Worland, P. B., "Parallel Methods for the numerical solution of ordinary differential
equations," IEE Trans. Comput, Vol. C-25, pp. 1045-1048, 1976.

9. Johnson, L. W., and Riess, R. D., Numerical Analysis, Second Edition, Addison-
Wesley Publishing Co., Inc., Reading, MA, 1982.

10. Miranker, M. L. and Liniger, W., "Parallel Methods for numerical integration of
ordinary differential equations," J. Math. Comput., Vol. 21, pp. 303-319, 1967.

11. Hutchinson, D. and Khalaf, B. M. S., "Parallel algorithms for solving initial value
problems: front broadening and embedded parallelism," Parallel Computing, Vol. 17,
pp. 957-968, 1992.

12. Shampine, L. F. and Gear, C. W., "A User's View of Solving Stiff Ordinary Differential
Equations," SIAM Review, Vol. 21, No. 1, pp. 1-17, 1979.

NSWCDD/TR-94/217

REFERENCES (continued)

13. Battin, Richard H., An Introduction to the Mathematics and Methods of Astrodynamics,
American Institute of Aeronautics and Astronautics, Inc., New York, NY, 1987.

NSWCDD/TR-94/217

APPENDIX A

PARALLEL BLOCK IMPLICIT FORMULATION

A-l/A-2

NSWCDD/TR-94/217

CONTENTS

Section E^e

I. INTRODUCTION/GENERAL PROGRAM STRUCTURE A-4

II. RUNGE/KUTTA (R/K) IMPLEMENTATION A-5

a. R/K INITIALIZATION MODULE A-6

b. R/K TRAJECTORY INTEGRATION MODULE A-7

c. R/K THREE-FORCE MODULE (FThree) A-9

d. R/K OBLATE GRAVITY MODULE (G0w«) A"10

III. PARALLEL BLOCK IMPLICIT (PBI) IMPLEMENTATION A-ll

a. PBI INITIALIZATION MODULE A-13

b. PBI TRAJECTORY INTEGRATION MODULE A-15

c. PBI SIX-FORCE MODULE (Fsix) A-17

d. PBI OBLATE GRAVITY MODULE (GobH—same as Section Il.d) A-18

A-3

NSWCDD/TR-94/217

I. INTRODUCTION/GENERAL PROGRAM STRUCTURE

This formulation is intended for implementation on a parallel computer and is designed
to test out the efficiencies of a candidate integration procedure for trajectory parallelism (the
Parallel Block Implicit (PBI) integration algorithm) against a commonly used serial proce-
dure (fourth-order Runge/Kutta (R/K)). Since the relative efficiencies of the two schemes
are to be compared, both must be independently implemented and timing runs must then
be conducted on both implementations. This formulation thus, in reality, consists of two
independent trajectory formulations. The (serial) R/K consists of Sections Il.a through Il.d
of the formulation, while the PBI formulation consists of Sections IILa through IILd. (Here
Section III d is identical to Section Il.d and as such is not reproduced.) Sections Il.a and IILa
share 'common code,' which can be reused as noted explicitly in Section IILa. Both 'major
sections' of the formulation (Section II and Section III) are sufficiently straightforward as to
warrant only several minor additional comments.

With regards to the 'R/K formulation' (Section II) the 'Initial Condition (I.C.) Module'
(Section Il.a) and the 'R/K Integration Module' (Section Il.b) are the two major modules
with the I.C. Module being called first. Also the 'Three Force Module' (Section II.c) and
the 'Oblate Gravity Module' (Section Il.d) are called from the 'R/K Integration Module'
(Section Il.b). These last two modules are formulated as 'function calls' for convenience
(i.e., Section II.c is formulated as FThTee(- • •) while Section Il.d is formulated as Gobn{- '•))■
The R/K used is a standard text book fourth-order one—a mathematical description of the
equations used can be found in the main introduction to the 'R/K formulation' (Section II).

With regards to the 'PBI formulation' (Section III) the 'I.C. Module' (Section IILa)
and the 'PBI Integration Module' (Section IILb) are the two major modules with the I.C.
Module being called first. The 'Six Force Module' (Section III.c) and the 'Oblate Gravity
Module' (Section IILd or Section Il.d) are called from the 'PBI Integration Module' (Section
III b). These last two modules are formulated as 'function calls' for convenience [i.e. Section
III.c is formulated as F.te(- • •) while, as noted above, Section IILd or Il.d is formulated as
Gobiti- • •)]• A mathematical description of the equations used for the PBI technique can be
found in the main introduction to the 'PBI formulation' (Section III).

A-4

NSWCDD/TR-94/217

II. RUNGE/KUTTA (R/K) IMPLEMENTATION

The second order differential equation to be integrated is

x = f(i,x,v), (A-l)

where three-vectors are shown in boldface type (i.e., x and v are three-vectors while f is a
vector valued function). Equation (A-l) must be integrated in a step-by-step fashion. It is
standard practice to introduce a 'running index,' say * to indicate the present step of the
integration process. (It is not necessary to dimension variables for this index—all that is
required is to simply make sure that the 'new' or 'updated values' [i.e., the (i + l)'th values]
are distinguished from the 'current values' of the appropriate registers [i.e., the t'th values].)
The standard fourth-order R/K update equations are

x,-+i = x, + hvi + |(m0 + mx + m2) (A-2)

vi+1 = v,- + |(mo + 2m! + 2m2 + m3), (A-3)

where

m0 = Äf(*,-,xi,v,-) (A-4)

mi = ht(ti + f, x, + |vt-, v,- + |m0) (A-5)

m2 = M(U + |,x,- + |v,- + |mo,v,- + JmO (A-6)

m3 = hf(ti+1, xt- + hv{ + fmx, v,- + m2) (A-7)

and ,A v

*.-+! = *.- + I- (A-8)

A-5

NSWCDD/TR-94/217

a. R/K INITIALIZATION MODULE

This module (or 'SUBROUTINE') sets up initial conditions or 'input' values for the
R/K integration software. In all the sections that follow, the dimensions of variables or
constants are denoted by appending subscripts and square brackets. The subscripts denote
the size of dimension required explicitly. (Thus [x3] means that x is a 'three-vector' or array
of dimension three.) Undimensioned variables are shown in the input-output list without
brackets. All variables in the input-output lists are of type REAL unless otherwise noted.

PURPOSE OF MODULE: This module sets up initial conditions for R/K variables and

constants.

INPUT: None

OUTPUT (CONSTANTS): [Xo3] , [V0a] ,a0,a2,T0,Tend,Hs!*

The following values (in engineering units) are set up when this module is called (other units
or more exact values can be substituted if required [see Appendix B]):

a0 = -.1407643 x 1017

a2 = -.71110 x 1012.

Reasonable test values must also be supplied for the following variables (it is assumed that
the origin of the coordinate system is at the earth's center and that the z-axis is along the
polar direction):

{appropriate
input values

(in feet)

appropriate
> , V0 = { input values

(feet per second)

To = input (in seconds)

Tend = input (in seconds)

Hg{£ = 1 or input (in seconds).

{ End of Module}

A-6

NSWCDD/TR-94/217

b. R/K TRAJECTORY INTEGRATION MODULE

This module (or 'SUBROUTINE') is the main R/K integration module. (See the com-
ments given in Section Il.a for variable and constant sizing conventions.)

PURPOSE OF MODULE: This module integrates position and velocity vectors by applying
equations (A-2) through (A-8). The governing differential equation is equation (A-l).

INPUT (CONSTANTS): [X„3], [V„3] ,T0,Tend,Hs/*

OUTPUT (PRINT OUT ONLY): r,[X3],[V3]

VARIABLES ('LOCAL'): T, [X3], [V3], [F3], [m„3] , [mj , [m2s] , K]

First initialize time, position and velocity variables:

T = T0

X = X0

V = V0.

Next set up 'main do loop':

Begin Loop: Do until T > Tend

h - uRlK
h
 = HSteP

i,+i = T + h.

Next calculate the 'three-force' (i.e., 'CALL' Section II.c):

F = FT/lree(T,X,V).

Evaluate the right-hand side of equations (A-4), (A-5) and (A-6):

m0 = h¥

F = FThree(T + |, X + |V, V + |mo)

F = FrwCT + |,X + f V + |m0, V + Jim)

A-7

NSWCDD/TR-94/217

F = FrÄree(*,-+1,X + ÄV + f rru, V + m2)

m3 = AF.

Update X: Replace X by

X + ÄV + |(m0 + mi + m2).

(Operationally this is a two-step process [Xnew = X + KV + |(m0 + m1 + m2) and
X = Xnew] that can be performed in a single step in most programming languages.)

Similarly update V: Replace V by

V + J(mo + 2mi + 2m2 + m3).

Update T: Replace T by T + h (i.e., T = T + h).

Next print the output variables:

PRINT OUT: T, X and V.

Finally branch back to the 'main do loop entry point.'

End test on T.

{ End of Module}

A-8

NSWCDD/TR-94/217

c. R/K THREE-FORCE MODULE (Fjw)

This module (or 'SUBROUTINE') calculates three-force.

PURPOSE OF MODULE: In the governing differential equation (equation (A-l)) a force
evaluation occurs on the right-hand-side. This module evaluates that force as required by

R/K numerical integration.

INPUT: T,[X3],[V3]

OUTPUT: FThree

VARIABLES ('LOCAL'): [G3]

First call the oblate gravity evaluator (i.e., 'CALL' Section Il.d):

G = Gotzt(X).

Next set up the value of FThree and return:

Fj/iree = G .

{ End of Module}

A-9

NSWCDD/TR-94/217

d. R/K OBLATE GRAVITY MODULE (Gout)

This module (or 'SUBROUTINE') calculates oblate gravity at a given position (i.e., the
specified position vector R). Appendix B provides a derivation of the equations implemented

in this section.

PURPOSE OF MODULE: In the governing differential equation (equation (A-l)) a force
evaluation occurs on the right-hand-side. This module evaluates the gravitational part of
that force as required by R/K (or PBI) numerical integration.

INPUT: [R3]

OUTPUT: Gout

INPUT (CONSTANTS): a0,a2

VARIABLES ('LOCAL'): [G3],R,GA,GB

First calculate the magnitude of the vector R:

R = yjRl + R\ -f R

where (R \

R = I R2 >■
(Rs)

Next calculate intermediates:
O0-O2

GA"~RT
'$Rl

Calculate the gravity components:

G\ = R\ ■ GB

Gz = i?2 • GB

G3 = Rz • (GB - 2GA),

where , ~

G=\ G\
(G3

Next set up the values of Gout and return:

Gout = G.

{End of Module}

[End of R/K Formulation]

A-10

NSWCDD/TR-94/217

III. PARALLEL BLOCK IMPLICIT (PBI) IMPLEMENTATION

As noted in Section II, the second order differential equation to be integrated is

x = f(i,x,v),

where three-vectors are shown in boldface type (i.e., x and v are three-vectors while f is
a vector valued function). Equation (A-l) should be contrasted with the usual equation
treated directly by most numerical integration procedures:

!-'<'■*>•
(A-9)

Equation (A-9) is first order (instead of second order) and it treats only the 'one-dimensional'
case. For standard numerical integration schemes it is a simple matter to treat higher-
dimensional cases (as in equation (A-l))—in effect all that is necessary is to replace the
scalar quantities in equation (A-9) by the appropriate vector-valued ones. The other 'defect'
can also be overcome easily. A second order differential equation can be recast in the form
of a first order differential equation by simply treating x and x as independent quantities
[which doubles the number of arguments in equation (A-9)]. The above strategy is used in
the PBI implementation given in this section. This means that we must deal with a 'six-
vector' implementation rather than the 'three-vector' implementation given in Section II.
The following paragraph should help clarify the mathematical details. (In Section III the
'running index,' which indicates the present step of the process, is implicitly understood
and as such does not appear in either the mathematical equations or the formulation [except
indirectly during the update to the 'state vector'].) Whereas three-vectors have been denoted
simply by boldface type, six-vectors will be denoted by boldface type with top arrows.

Let the 'generalized position vector' (i.e., the 'state vector') and 'generalized force' (i.e.,
the 'six-force') be defined as follows:

x \

Y= I > and F = <
•x

V. 'y

vx

L y

lF2J

where (s, y, x) are the components of position, (««, vy, vz) are the components of velocity and
(Fx,Fy,F2) are the components of (three) force. Then F = ma = mX becomes

</Y
dt

= F = F(*,Y) (A-10)

A-ll

NSWCDD/TR-94/217

PBI equations are given in terms of Y(r, s) where r is the node number (r = 1,2,3, or 4 and
is a sort of 'running index' within a given integration cycle) and s is the iteration number
(s = 0 to start, then a = 1,2,3 and [finally] 4). 'Position' and time depend on the iteration

number: Y = Y(r,5), t = t(r). Let F(r>«) = F (t(r),*(r,*)), then the PBI integration

equations are given below (where Y0 is the starting value of Y for the given integration

cycle V
Y(r,0) = Yo + r-/l-F(r,0), (A-ll)

where r = 1,2,3,4 and _
F(r,0) = F(t(r),Yo).

Next iterate the following set of equations for 5 = 1 to 4:

Y(l,5 + l) = Yo + 4{251Fo + 646F(l,5)-264F(2,5) + 106F(3,5)

-19F(4,6)} (A-12)

Y(2, s + 1) = Yo + £{29F0 + 124^(1,*) + 24F(2, s) + 4F(3, *) - F(4, s)} (A-13)

Y(3,5 + l) = Yo + |{9Fo + 34F(l,5) + 24F(2,5)+14F(3,S) -F(4,5)} (A-14)

Y(4,5 + 1) = Yo + |{7F0 + 32F(M) + 12F(2,5) + 32F(3,5) + 7F(4,5)} (A-15)

where _ _
Fo = F(0,0).

This completes one full integration step. To perform the next integration step set

Y0 = Y(4,5) (A-16)

and apply the same procedure again (starting with equation (A-ll)).

The reader may have observed that since six-vectors are used in the above equations one
can achieve parallelism by simply allocating a 'computation node' to each of the six inde-
pendent components. This is indeed one strategy for implementing parallejism; however, the
favored approach arises from observing that F(M),F(2,5),F(3,s) and F(4,s) are compu-
tationally independent during the iteration of equations (A-12), (A-13), (A-14) and (A-15)
and, as such, each equation can be assigned to a specific (and independent) 'computational

node.'

A-12

NSWCDD/TR-94/217

a. PBI INITIALIZATION MODULE

This module (or 'SUBROUTINE') sets up initial conditions or 'input' values for the PBI
integration software. Much of the beginning of this section is identical to Section H.a. (As in
Sections Il.a through Il.d, the dimensions of variables or constants are denoted by appending
subscripts and square brackets within this and the following sections. The subscripts indicate
the size of dimension required explicitly. {Thus [x3] means that x is a 'three-vector' or array
of dimension three.} Undimensioned variables are shown in the input-output list without
brackets. All variables in the input-output lists are of type REAL unless otherwise noted.)

PURPOSE OF MODULE: This module sets up initial conditions for PBI variables and

constants.

INPUT: None

OUTPUT (CONSTANTS): [Xo3] , [V<,3], a0, a2, T0, Tend, #£?/, [&,], [CAXA]

The following values (in engineering units) are set up when this module is called (other units
or more exact values can be substituted if required [see Appendix B]):

a0 = -.1407643 x 1017

a2 = -.71110 xlO12.

Reasonable test values must also be supplied for the following variables (it is assumed that
the origin of the coordinate system is at the earth's center and that the 2-axis is along the
polar direction):

{appropriate ^
input values > , V0 = <

(in feet) J

appropriate
input values

(feet per second)

To = input (in seconds)

Tend = input (in seconds)

Most of the above is identical to Section Il.a (of course H$£ is not set since it is not used
in this module).

Next set up constants indigenous to the PBI integration technique itself:

TjPBI _ I
HsteP - *■■

A-13

NSWCDD/TR-94/217

(Notice that the PBI 'step size' [H%%] here is basically four times the R/K step size since
the node number used is four here [i.e., Section II].)

i = !, £ = g, ^ = 3(i), 2fc = 2(£)

Ci.i= !g, cli2 = -(!)' ^.3= S> ^ = -(ä)

C2,l = W' ^2,2 = |g» ^2,3 = §5» ^2,4 = - (s)

G»,i = 3(g), C3l2 = 3(|), C3)3 = 3(i), (73,4 =-3 (i)

^4.1 = 2 (g), C4)2 = 2 (g), C4,3 = 2 (g), C4>4 = 2 (i)

Next perform a 'consistency check:'

4

k=i
4

5i = ^Cfcj; forj = 1,2,3,4.

Print the results and exit this module:

Print So,Si,S2,S3,S4.

{ End of Module}

A-14

NSWCDD/TR-94/217

b. PBI TRAJECTORY INTEGRATION MODULE

This module (or 'SUBROUTINE') is the main PBI integration module.

PURPOSE OF MODULE: This module integrates position and velocity vectors by applying
equations (A-2) through (A-7). The governing differential equation is equation (A-l).

INPUT (CONSTANTS): [X0s] , [V0s] ,TQ,Tend,[B4],[C4x4]

OUTPUT (PRINT OUT ONLY): T, [Y*6X4

VARIABLES ('LOCAL'): [tRi] , [Y^ ?

-*
Y 5 F ■*■ ri6 , FK6X4 , [S4], [Ye], [F6]

First initialize time and the 'state vector' (position and velocity variables):

Xo(l) ^
Xo(2)
Xo(3) y

Vo(l) f
Vo(2)

I V0(3)

Y= <

where Xo(fc) = [Xo]* for k = 1,2,3 (and similarly for V0).

Next set up 'main do loop':

Begin Loop: Do until T > Tend
T = tp

rPBI h = Hstep

Next calculate the 'six-force' (i.e., 'CALL' Section III.c)

Set

Set

F = FaiI(r,Y).

tR(k) = tp + k-h for k = 1,2,3,4.

YA(t,ib)=:Y(0 + *-A-F(0

for k = 1,2,3,4 and i = 1,2,3,4.

A-15

NSWCDD/TR-94/217

Set _ ^
Yn=Y, Fn = F.

Next perform the iterative improvement (built into the PBI technique):

Begin loop / = 1 to 4 (this is an implicit loop—i.e., / is not used explicitly):

Begin loop K = 1 to 4:

Set
Y(J) = Y(J,üO;/=l,2,-.-,6

T = tR(K)

F = fWr,Y)
Fß(7,70 = F(7);7 = l,2,---,6.

End loop K.

Calculate YR(I,K) = [YR]I,K ■

4

YÄ(/, K) = Yn(7) + h-BK- Fn(J) + hJ2 CK,J?R(I, J)
J=I

for 1= 1,2,3,---,6; üf = 1,2,3,4.

End loop /.

Update time and the 'state vector' (i.e., Y):

<P = tR(A)

Y(/)=Y(7,4) ,7 = 1,2,3,-.•,6.

Next print the output variables:

PRINTOUT: T and YR .

Finally branch back to the 'main do loop entry point:'

End test on T.

{ End of Module}

A-16

NSWCDD/TR-94/217

PBI SIX-FORCE MODULE (Fsix)

This module (or 'SUBROUTINE') calculates 'six-force.'

PURPOSE OF MODULE: If the governing set of second order differential equations (i.e.,
equation (A-l) in vector form) is recast as a set of first order differential equations (i.e.,
equation (A-9) in vector form) a 'six-dimensional' force (or 'six-force') evaluation occurs on
the right-hand side. This module evaluates that force as required by the PBI numerical

integration procedure.

INPUT: [X3]

OUTPUT: SIX6

VARIABLES ('LOCAL'): [Y6],[G3],[Z3]

First set up the call variables for the oblate gravity evaluator

x2

Yx
> = < Y2

Y3 -3)

and then actually 'CALL' Section IILd or Il.d:

G = Gowt(X, G).

Next set up the value of Fst-r and return:

Y5

F = < Ye

G2

G3,

{ End of Module}

A-17

NSWCDD/TR-94/217

d. PBI OBLATE GRAVITY MODULE (G0i,/t—same as Section Il.d)

This module (or 'SUBROUTINE') calculates oblate gravity. This section is identical to
Section Il.d and is not reproduced here to eliminate redundancy—reproduce the coding for

Section Il.d and insert it here.

[End of PBI Formulation]

A-18

NSWCDD/TR-94/217

APPENDIX B

OBLATE GRAVITATIONAL MODEL DERIVATION

B-l/B-2

NSWCDD/TR-94/217

OBLATE GRAVITATIONAL MODEL DERIVATION

This appendix derives the oblate gravitational model and constants found in Appendix A.
Toward that end, first consider a spherical harmonic series expansion for the Earth's external
gravitational potential.8"1 ,B"2 The gravitational acceleration, G, can then found by taking
the gradient of the potential (V):

G = W. (B-l)

Notice that 'gravitational acceleration' does not include centrifugal force terms.8"1 (One
would expect centrifugal terms not to be included in the gravitational model here since in-
ertial coordinate frames are implicitly assumed throughout this report.) Physicists do not
commonly make the distinction between gravity and gravitation that geophysicists make,8"1

since it is always obvious from the physical context whether centrifugal forces are to be
included or not. In this appendix the distinction between gravitation and gravity is main-
tained; however, elsewhere in the text the more customary phrase 'oblate gravity model' is
used in place of the (geophysically) correct term 'oblate gravitational model.' It is also worth
noting that the sign convention on the right-hand side of equation (B-l) is the one commonly
used by geophysicists3"1,8"2 and it differs from the one commonly used by physicists. The
sign convention of equation (B-l) is adhered to throughout the report.

For an oblate gravitational model, it is only necessary to retain the first two dominant
terms in a spherical harmonic expansion:8"1,8"2

V = -
kM
R

1 + ^/Mcosfl (B-2)

where R is the magnitude of the position vector R (as in Section Il.d of Appendix A); <j>
is the angle between the polar vector (R3 or z direction) and the position vector R; P2

is the second-order Legendre polynomial of the first kind; a, J2 and kM are earth-related
constants; and the origin of the coordinate system is at the Earth's center. The following
(approximate) values of these constants will be used in the sequel:8"2

kM = 3.986 x 105^

a = 6378 km

J2 = .0010827

B-l Heiskanen, Weikko A. and Moritz, Helmut, Physical Geodesy, W. H. Freeman and Co., San Francisco,
CA, 1967.

B-2 Kaplan, Marshall H., Modern Spacecraft Dynamics & Control, John Wiley & Sons, Inc., New York,
NY, 1976.

B-3

NSWCDD/TR-94/217

In what follows let x = i?i, y = R2, z = R3 and r = R. Then

P2(cos <f>) = J(3 cos 2<j> + 1) = |(2 cos2 <j> - 1) + \

and since cos <f> = z/r it follows that

P2(cos<f>) 3z2 1

r2 2i ,4 2r2 '

Equation (B-2) can thus be rewritten as

—e-**(£-yo}-
Moreover, since Vr = R/r it follows that

V (M - nR V
 I rn J ~ rn+2 '

and thus that

ÖV -kMx . _, 2 _
ox rö

"3 x 15z2x"

2r5 2 r7.

dV -kMy 2
-5- = Ö «Mfl J2 ay rJ

'3y 15 *V
2r5 2 r7

dV -kMz , ,, , T
-a- = 5 kMa* J2 oz r6

'32; 3 z 1
7? + 2 r5 2

5z3

> r7

(B-3)

(B-4)

(B-5)

Equations (B-3), (B-4), and (B-5) can be simplified by introducing the following variables

CM = J—

G-$ + G.(£-l)
and set of constants

a0 = —kM

a2 = — § a2 J2 •

Thus equations (B-3), (B-4), and (B-5) can be rewritten as

dv r , r
ox

— = G2 = y-GB ay

?f = G3 = z-(GB-2GA),
oz

(B-6)

(B-7)

B-4

NSWCDD/TR-94/217

in agreement with Section Il.d of Appendix A, where

Finally, using the values of the Earth-related constants given previously in equations (B-6)
and (B-7) and switching to engineering units (i.e., feet, feet per second, etc.) yields:

a0 = -.1407643 x 1017

a2 = -.71110 xlO12,

in agreement with the values found in Sections Il.a and Ill.a of Appendix A.

B-5

NSWCDD/TR-94/217

DISTRIBUTION

Copies

DOD ACTIVITIES (CONUS)

ATTN CODE 411 1
CHIEF OF NAVAL RESEARCH
BALLSTON TOWER 1
800 NORTH QUINCY ST
ARLINGTON VA 22217-5660

ATTN MATH AND SCIENCES DIV LIB 1
OFFICE OF NAVAL RESEARCH
WASHINGTON DC 20360

ATTN SP 00 1
SP20 1
SP23 1

STRATEGIC SYSTEMS PROGRAM
OFFICE
DEPARTMENT OF THE NAVY
CRYSTAL MALL NO 3
1931 JEFFERSON DAVIS HIGHWAY
ARLINGTON VA 22202

DEFENSE TECHNICAL INFORMATION

CENTER
CAMERON STATION
ALEXANDRIA VA 22304-6145 12

ATTN E29L (TECHNICAL LIBRARY) 1
COMMANDER
CSSDD NSWC
6703 W HIGHWAY 98
PANAMA CITY FL 32407-7001

(1)

NSWCDD/TR-94/217

DISTRIBUTION (Continued)

Copies

NON-DOD ACTIVITIES (CONUS)

ATTN DUDLEY KNOX LIBRARY
SUPERINTENDENT
U S NAVAL POSTGRADUATE SCHOOL

MONTEREY CA 93943

PRESIDENT
NAVAL WAR COLLEGE
NEWPORT RI 02841

ATTN GIFT AND EXCHANGE DIVISION
LIBRARY OF CONGRESS
WASHINGTON DC 20540

THE CNA CORPORATION

PO BOX 16268
ALEXANDRIA VA 222302-0268

INTERNAL

B
C
Cl
D
Dl
D2
D4
E231
E282
F
G
J
K
K10
K104
K12

(SWANSBURG)

(A R DIDONATO)

(2)

NSWCDD/TR-94/217

DISTRIBUTION (Continued)

Copies

INTERNAL

K12 (CARR)
K12 (CUNNINGHAM)

K12 (OTOOLE)

K12 (TANNENBAUM)

K13
K13 (LAWTON)
K40
K407 (GATES)
K41
K41 (BOYLES)
K41 (DAVIS)
K41 (THOMPSON)
K41 (OWEN)
K41 (RUFTY)
K41 (WILKERSON)
K42
K42 (HUGHES)
K42 (ROBINSON)

K43
K43 (BROWN)

K43 (DRESHER)
K44
K44 (DAVAILUS)
K44 (GODIN)
K44 (PHAM)
K50
K505
K51
K52
K53
K54
K54 (GOOD)

K55
N74 (GIDEP)

R

(3)

REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Pro|ect (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

December 1994

3. REPORT TYPE AND DATES COVERED

FINAL
4. TITLE AND SUBTITLE

Parallel Block Implicit Integration Technique for Trajectory Parallelism

6. AUTHOR(S)

AlanE.Rufty

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Commander
Naval Surface Warfare Center, Dahlgren Division (Code K41)
17320 Dahlgren Road
Dahlgren, VA 22448-5100

8. PERFORMING ORGANIZATION
REPORT NUMBER

NSWCDD/TR-94/217

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This report describes the evaluation of a Parallel Block Implicit (PBI) integration technique in a simplified
missile trajectory. This project was carried out to ascertain the suitability of PBI techniques when modest
amounts of parallelism are available; that is, when 3 to 10 processors are allocated per missile trajectory. The
PBI technique was first evaluated on a serial mainframe computer before it was implemented in parallel on
an INMOS TRANSPUTER with four parallel central processing units. While the serial implementation of
the four-node PBI technique indicated that a speedup of a factor of three to four was possible with ideal
hardware, in practice only a modest gain (approximately 30 percent) was obtained because of systems-related
overhead.

14. SUBJECTTERMS

Parallel Block Implicit, TRANSPUTER, Runge/Kutta, parallel processing,
trajectory parallelism

15. NUMBER OF PAGES

40
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev 7 89)

GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important that
this information be consistent with the rest of the report, particularly the cover and its title page.
Instructions for filling in each block of the form follow. It is important to stay within the lines to meet
optical scanning requirements.

Block 1. Agency Use Only (Leave blank).

Block 2. Report Date. Full publication date including
day, month, and year, if available (e.g. 1 Jan 88). Must
cite at least the year.

Block 3. Type of Report and Dates Covered. State
whether report is interim, final, etc. If applicable, enter
inclusive report dates (e.g. 10 Jun 87 - 30 Jun 88).

Block 4. Title and Subtitle. A title is taken from the
part of the report that provides the most meaningful
and complete information. When a report is prepared
in more than one volume, repeat the primary title, add
volume number, and include subtitle for the specific
volume. On classified documents enter the title
classification in parentheses.

Block 5. Funding Numbers. To include contract and
grant numbers; may include program element
number(s), project number(s), task number(s), and
work unit number(s). Use the following labels:

C
G
PE

Contract
Grant
Program
Element

PR - Project
TA - Task
WU - Work Unit

Accession No

BLOCK 6. Author(s). Name(s) of person(s) responsible
for writing the report, performing the research, or
credited with the content of the report. If editor or
compiler, this should follow the name(s).

Block 7. Performing Organization Name(s) and
address(es). Self-explanatory.

Block 8. Performing Organization Report Number.
Enter the unique alphanumeric report number(s)
assigned by the organization performing the report.

Block 9. Sponsoring/Monitoring Agency Name(s) and
Address(es). Self-explanatory.

Block 10. Sponsoring/Monitoring Agency Report
Number. (If Known)

Block 11. Supplementary Notes. Enter information not
included elsewhere such as: Prepared in cooperation
with...; Trans, of...; To be published in.... When a
report is revised, include a statement whether the new
report supersedes or supplements the older report.

Block 12a. Distribution/Availability Statement.
Denotes public availability or limitations. Cite any
availability to thepublic. Enter additional limitations
or special markings in all capitals (e.g. NOFORN, REL,
ITAR).

DOD - See DoDD 5230.24, "Distribution
Statements on Technical Documents."

DOE - See authorities.
NASA - See Handbook NHB 2200.2
NTIS - Leave blank

Block 12b. Distribution Code.

DOD
DOE

NASA
NTIS

Leave blank.
Enter DOE distribution categories from
the Standard Distribution for
Unclassified Scientific and Technical
Reports.
Leave blank.
Leave blank.

Block 13. Abstract. Include a brief (Maximum 200
words) factual summary of the most significant
information contained in the report.

Block 14. Subject Terms. Keywords or phrases
identifying major subjects in the report.

Block 15. Number of Pages. Enter the total number
of pages.

Block 16. Price Code. Enter appropriate price code
(NTIS only)

Block 17.-19. Security Classifications. Self-
explanatory. Enter U.S. Security Classification in
accordance with U.S. Security Regulations (i.e.,
UNCLASSIFIED). If form contains classified
information, stamp classification on the top and
bottom of this page.

Block 20. Limitation of Abstract. This block must be
completed to assign a limitation to the abstract.
Enter either UL (unlimited or SAR (same as report).
An entry in this block is necessary if the abstract is to
be limited. If blank, the abstract is assumed to be
unlimited.

Standard Form 298 Back (Rev ?-89)

